Thursday, 19 January 2017

Projecting Image into Sphere - For Python Beginners

Using Equirectangular map projection

In the below code paste your image name in place of  "XXXX.png"

# Image Projection onto Sphere

import math, random
from PIL import Image
imgxOutput = 768; imgyOutput = 768
pi2 = math.pi * 2

# 3D Sphere Rotation Angles (arbitrary)

xy = -pi2 * random.random()
xz = -pi2 * random.random()
yz = -pi2 * random.random()
sxy = math.sin(xy); cxy = math.cos(xy)
sxz = math.sin(xz); cxz = math.cos(xz)
syz = math.sin(yz); cyz = math.cos(yz)
imageInput = Image.open("Equirectangular_projection_SW.jpg")
(imgxInput, imgyInput) = imageInput.size
pixelsInput = imageInput.load()
imageOutput = Image.new("RGB", (imgxOutput, imgyOutput))
pixelsOutput = imageOutput.load()
# define a sphere behind the screen
xc = (imgxOutput - 1.0) / 2
yc = (imgyOutput - 1.0) / 2
zc = min((imgxOutput - 1.0), (imgyOutput - 1.0)) / 2
r = min((imgxOutput - 1.0), (imgyOutput - 1.0)) / 2

# define an eye point view

xo = (imgxOutput - 1.0) / 2
yo = (imgyOutput - 1.0) / 2
zo = -min((imgxOutput - 1.0), (imgyOutput - 1.0))
xoc = xo - xc
yoc = yo - yc
zoc = zo - zc
doc2 = xoc * xoc + yoc * yoc + zoc * zoc
for yi in range(imgyOutput):
    for xi in range(imgxOutput):
        xio = xi - xo
        yio = yi - yo
        zio = 0.0 - zo
        dio = math.sqrt(xio * xio + yio * yio + zio * zio)
        xl = xio / dio
        yl = yio / dio
        zl = zio / dio
        dot = xl * xoc + yl * yoc + zl * zoc
        val = dot * dot - doc2 + r * r
        if val >= 0: # if there is line-sphere intersection
            if val == 0: # 1 intersection point
                d = -dot
            else: # 2 intersection points => choose the closest
                d = min(-dot + math.sqrt(val), -dot - math.sqrt(val))
                xd = xo + xl * d
                yd = yo + yl * d
                zd = zo + zl * d
                x = (xd - xc) / r
                y = (yd - yc) / r
                z = (zd - zc) / r
                x0=x*cxy-y*sxy;y=x*sxy+y*cxy;x=x0    #  For xy-plane rotation
                x0=x*cxz-z*sxz;z=x*sxz+z*cxz;x=x0     #   For xz-plane rotation
                y0=y*cyz-z*syz;z=y*syz+z*cyz;y=y0     #   For yz-plane rotation
                lng = (math.atan2(y, x) + pi2) % pi2
                lat = math.acos(z)
                ix = int((imgxInput - 1) * lng / pi2 + 0.5)
                iy = int((imgyInput - 1) * lat / math.pi + 0.5)
                try:
                    pixelsOutput[xi, yi] = pixelsInput[ix, iy]
                except:
                    pass
imageOutput.save("XXXX.png", "PNG")

No comments:

Post a Comment